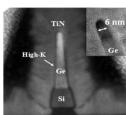


TC17 - Emerging Plasma Nanotechnologies

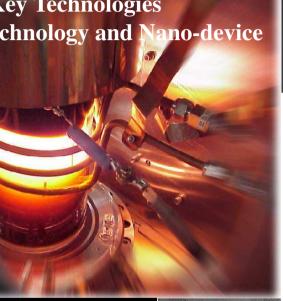
Plasma Physics/Chemistry, Material/Surface/Interface Science and Nano-Engineering

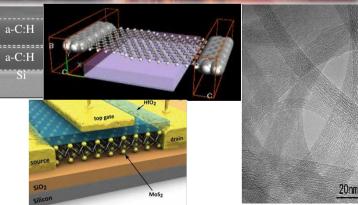
Nano-materials and Optical/Electrical/Spintronics Nanodevices

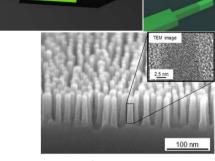


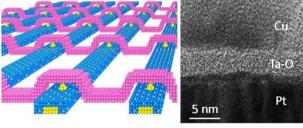
Planar FET

Area of Cell (um2)


0.01

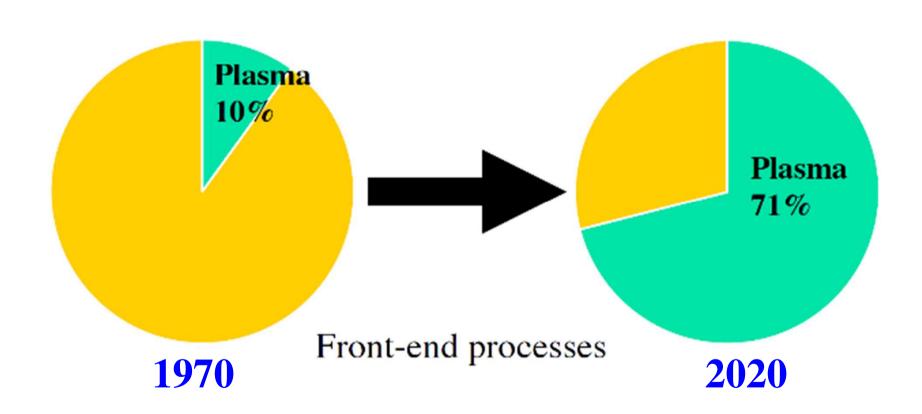

22



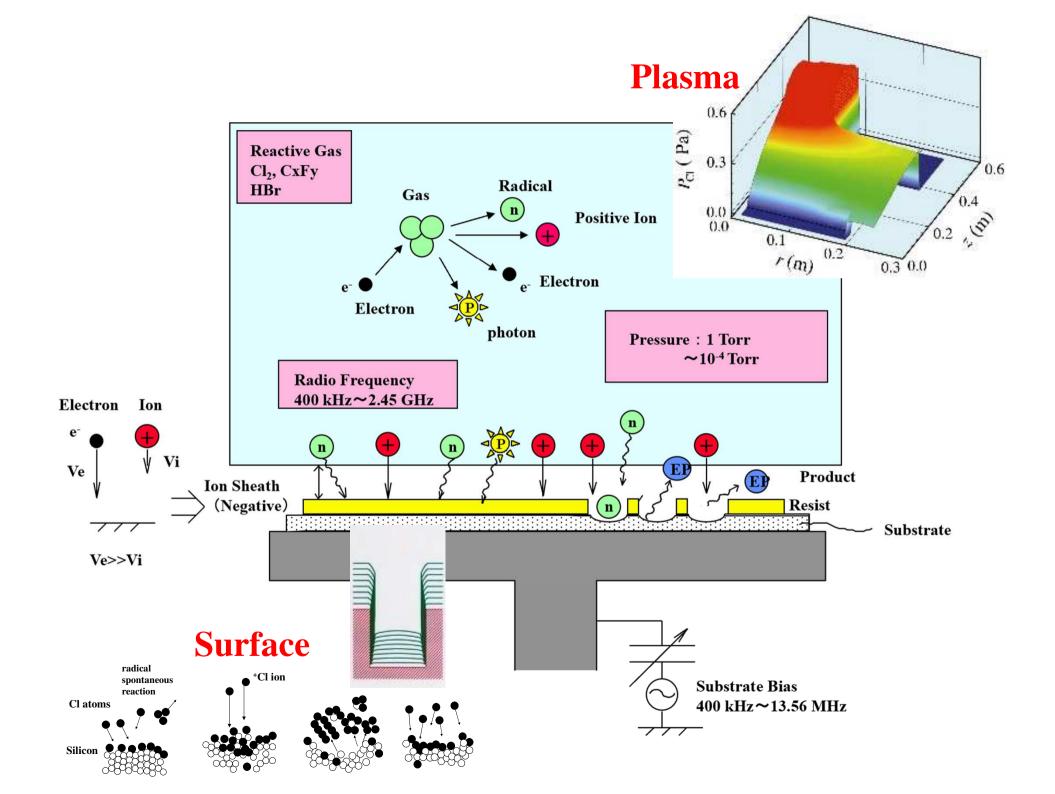


Quantum dots

Amorphous Phase


Ultra-Large Integrated Circuit and 3D Heterogenous Integration Devices

Technology Node(nm)


New Materials: Carbon Nanotubes, Graphene, 2D Materials and Nanoparticles

Neuromorphic Devices

Percentage of Plasma Processes in Semiconductor Manufacturing Processes

Key Technologies for Nano-fabrication and Nano-device

TC17 - Emerging Plasma Nanotechnologies

	Name Surname	Affiliation	E-mail	Scientific field of activity
Chair	Seiji Samukawa (Japan	Tohoku University	seiji.samukawa.e2@tohoku.ac.jp	Plasma nanomanufacturing and green nanotechnology
Co-Chairs	John P. Verboncoeur (USA	Michigan State University	johnv@egr.msu.edu,	Plasma Physics
	Uros Cvelbar	Jozef Stefan Institute	uros.cvelbar@guest.arnes.si	Plasma processing of nanomaterials for energy storage and sensing devices
Members	Masaharu Shiratani (Japan	Kyushu University	siratani@ed.kyushu-u.ac.jp	Plasma Electronics
	Peter Ventzek (USA	Tokyo Electron America Inc.	peter.ventzek@us.tel.com	Plasma process for semiconductor device manufacturing
	Kremena Makasheva (EU	Université Paul Sabatier	kremena.makasheva@laplace.univ-tlse.fr	Plasma deposition of nanocomposites, reactive plasmas, biomedical nanotechnologies
	Jong-Shinn Wu (Taiwan	National Yang Ming Chiao Tung University	chongsin@faculty.nctu.edu.tw	Plasma Modeling

Summary

1. Topics of Interest

Atomic Layer Deposition
Atomic Layer Modification
Atomic Layer Modification
Doping, Nanoparticle Formation
Nanostructure Fabrication and Analysis
Electron/Optical/Spintronics/Quantum device
Quantum Computing
Bio-medical Applications

1. Main Objectives of Technical Committee

To fabricate high performance nanodevices and nano-systems, atomic layer and damage-free plasma nanomanufacturing technologies are indispensable. For this purpose, it is essential to develop methods for generating and transporting charged particles, UV photons, and reactive species on the surface to suppress damages and to control atomic layer surface chemical reactions in plasma processing. Achieving control of atomic layer surface chemical reactions requires diagnostics and sensors for both the plasma and resultant surface states but also models (phenomenological to the first principles) that can predict process results. Therefore, our final target is the development and implementation of intelligent plasma nanomanufacturing technologies in accordance with Industry 4.0 and 5.0 standards.